FINANCIAL FORECASTING USING NEURAL NETWORKS
نویسندگان
چکیده
منابع مشابه
Neural networks for financial forecasting
Neural networks demonstrate great potential for discovering non-linear relationships in time-series and extrapolating from them. Results of forecasting using financial data are particularly good [LapFar87, Schöne9O, ChaMeh92]. In contrast, traditional statistical methods are restrictive as they try to express these non-linear relationships as linear models. This thesis investigates the use of t...
متن کاملFinancial Time Series Forecasting Using Artificial Neural Networks
Financial and capital markets (especially stock markets) are considered high return investment fields, which in the same time are dominated by uncertainty and volatility. Stock market prediction tries to reduce this uncertainty and consequently the risk. As stock markets are influenced by many economical, political and even psychological factors, it is very difficult to forecast the movement of...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Guidelines for Financial Forecasting with Neural Networks
Neural networks are good at classification, forecasting and recognition. They are also good candidates of financial forecasting tools. Forecasting is often used in the decision making process. Neural network training is an art. Trading based on neural network outputs, or trading strategy is also an art. We will discuss a seven-step neural network forecasting model building approach in this arti...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference
سال: 2006
ISSN: 2256-070X,1691-5402
DOI: 10.17770/etr2003vol1.2027